
Programming
Concepts Overview

Functions

When we see:

Functions - definitions
SIDE NOTE

function setup() {}

and

function draw() {}

These are function definitions.

We are not learning how to define functions
yet, but these definitions are necessary in
P5JS in order to see the “canvas” and in order
to “draw” images on it.

function setup() {}

is called once – it sets up the canvas
one time.

Functions - definitions
SIDE NOTE

function draw() {}

is a loop. It is called repeatedly ever
millisecond or so.

This allows for animation.

For now, ignore the function definitions. When we
talk about functions, we are referring to functions
like those on the example:

Functions - function calls

createCanvas()

background()

The () are how we “call” the function.

The () mean it is a function that does something.

For example, background(150) paints a grey square over
the whole canvas.

Inside a function we give arguments.

Functions - arguments

We can give 0, 1, or more arguments.

For example: noFill() is a function that
has no arguments

And circle() is a function that takes 3
arguments

Variables

Below is an example of hard-coding. We place
our circle at the x,y coordinate of (100,100)

If we replace the x,y coordinates with mouseX and
mouseY, then we can tell the circle to move with the cursor.

This is considered “soft-coding”, meaning the value of the
variables changes each time our loop runs.

This is because mouseX stores the value of the
cursor on the x axis, and mouseY stores the

value on the y axis.

This means, if the cursor is moved 50 pixels to the right, and 250
pixels down, the circle will move to that position.

mouseX = 50 mouseY = 250

x,y coordinates = 50,250

(50,250)

(0,0)

As the draw() function repeats every millisecond, and the
cursor moves, the circle will appear to follow the mouse.

Creating our own
variables

declare assign reassign

use

We can create our own variables to store
a custom value that we assign to it.

First we have to declare the variable.
In JS there are a few ways, here we
use let which creates the variable.

We can name them anything, as long
as it doesn’t begin with a symbol,
and doesn’t have any spaces.

Then we have to assign the variable.

We give it a starting value by writing

= and a value.

Don’t forget, every line of code that
isn’t a function definition or
conditional statement must end with

a ;

Now we can use the variable.

Here we replace the x,y coordinates
of the center of the circle.

When the code reaches line 12, it
looks above line 12 to find the value
of these variables.

It finds the value on line 5 and 6, and
uses those values circle(0,0,20).

Still inside our draw function, we tell
our variables to change by 1 every time
the draw loop runs.

At this point, it seems pointless to do
this, but let’s look at how this can be
used to animate our circle.

xPosition += 1; is the same thing
as saying

xPosition = xPosition + 1
Which means xPosition = 0 + 1

Then… xPosition = 1 + 1

Then… xPosition = 2 + 1
etc…

This is reassignment.

Here’s what this does: 0 += 1

1 += 1
2 += 1

3 += 1
4 += 1

etc. …

To make it return to the
top left corner,
We can add a conditional.

Conditionals – if

Conditional if statements always have a specific structure.

Conditionals - if

if (condition is true) {
do this code;

}

For example, is a
variable equal to a
certain number?

The first curly bracket represents
“then”. So, if a variable is equal to
a certain number, then…do this
code

Conditional if statements always have a specific structure.

Conditionals - if

if (condition is true) {
do this code;

}
else {

do this code;
}

We can add an else to say, if the
first condition is not true, then in all
other cases, do this code.
(ex: if a variable does not have the
given value, always do this other
thing)

Conditional if statements always have a specific structure.

Conditionals - if

if (condition is true) {
do this code;

}
else if (condition is true) {

do this code;
}
else {

do this code;
}

In between the if and the else, we
can add an else if to say, if the first
condition is not true (false), then
check this condition.

We can add multiple else ifs here.

If the if condition is false, the
program will check the else if
conditions, in order.

When a condition is true, the code
inside runs.

If we don’t add a
conditional here, the
circle will cross the screen
once and disappear.

We want to make it go
back to its starting point
– the origin – (0,0)

Here we check, is the x and y
position of the circle the bottom
corner – (400,400) ?

Conditionals

If it is equal to (400,400) then
we want to return it to the
origin – the top left corner.

All we have to do is make the
x,y coordinates equal to (0,0)

(400,400)(0,0)

Scope

The curly brackets in JS represent the scope of the program.

Scope

When we click on one, we
can see which one
matches it.

Here, these curly brackets
represent the scope of the
draw() function.

The curly brackets in JS represent the scope of the program.

Scope

Here, these curly brackets
represent the scope of the
draw() function.

This means, anything we
want to “draw” on our
canvas, needs to be
included inside the curly
brackets belonging to the
draw() function.

The curly brackets in JS represent the scope of the program.

Scope

Notice that there are
other curly brackets inside
the draw() function.

These belong to the if
statement. They
represent its scope.

The curly brackets in JS represent the scope of the program.

Scope

These belong to the if
statement. They
represent its scope.

This means, line 16 and
line 17 belong to the if
conditional.

Scope

Here is an example of a
conditional sequence that
changes the color of the
circle in three different zones.

The first two ifs are two
separate conditionals. They
both get checked even if one
is true.

Scope

Each if and else if and else
has their own scope.

Remember, when we click
on one curly bracket, we
can see which one
matches it.

This shows us the scope
of a function or a
conditional.

Operators

We can perform operations on variables in order to check for conditions or
to change (re-assign) a variable.

Operators

Assign a
variable

Reassign a
variable

Change a
variable

Check a
condition

Compare
conditions

= = + > &&
(and)

+= - < ||
(or)

-= *
(multiply)

== !
(not)

/
(divide)

function

functions

function definition

function definition

Variable declaration

Variable assignment

Variable reassignment
Variable use

Variable reassignment

Variable reassignment

Variable reassignment

Variable reassignment

conditional if statement

Separate conditional if statement

if scope

if scope

else if scope

else scope

setup() scope

draw() scope

Assign a
variable

Reassign a
variable

Change a variable Check a condition Compare conditions

= = + > &&
(and)

+= - < ||
(or)

-= *
(multiply)

== !
(not)

/
(divide)

Comments

Comments allow us to take
notes throughout our code.

Comments

They are not necessary for our
code to run. In fact, a comment
makes that text not work
(whether a note or a piece of
code)

We can use them to help us to
do the following things:

● Help us remember why we
used the code we did

● Help a new user understand
the code and the program

● Help us break down problems
as we’re writing new code

● Comment out pieces of code
to test different methods

We write them with // for a
one line comment

Comments in JS

We can also write them with /* and */ to
comment out multiple lines of code

This makes the
if statement not
run

Documentation

Some things can be figured out by trial and error.

Documentation - reference

It is easy to figure out what the arguments for
circle() do.

It is not so clear to figure out what the arguments
for triangle() do.

This is an example of when we would need to
look up the documentation, or reference page.

P5JS has a specific reference page for its library of code :

p5js.org/reference

https://p5js.org/reference/

By trying things out, we can figure out how many
arguments circle() needs, and what they do.

Documentation - reference

d = 100

Center position
= (100,100)

Triangle is less obvious, but on

p5js.org/reference we can figure out

how many arguments triangle() needs, and
what they do.

Documentation - reference

(100,100)

(0,200) (200,200)

https://p5js.org/reference/

All programmers use documentation
regularly. Every language has
documentation somewhere online.

Documentation - reference

We can’t know every function that exists, or
how every variable works. So we have to
look it up to understand how to use it.

On the P5JS reference page, there are lots
of specialized functions, variables, and
elements, and by clicking on them, we can
see what they do.

