Programming
Concepts Overview




Functions




**SIDE NOTE**

Functions - definitions

- [ °

function setup() {
createCanvas(400,400) ;|

}

When we see:

function draw() {
background(150);
}

1
2
3
4
5
6
and 7
8

These are function definitions.

We are not learning how to define functions
yet, but these definitions are necessary in
P5JS in order to see the “canvas” and in order

' to “draw” images on it.
L]



**SIDE NOTE**

Functions - definitions

is called once - it sets up the canvas
one time.

is @ loop. It is called repeatedly ever
millisecond or so.

O This allows for animation.

1
2
3
4
5
6
7
8

- [ i

function setup() {

}

createCanvas(400,400) ;|

function draw() {

}

background(150);



Functions - function calls m O

For now, ignore the function definitions. When we
talk about functions, we are referring to functions
like those on the example:

function setup() {
createCanvas(400,400) ;|

}

function draw() {
background(150);
}

coNO U WN —

The () are how we “call” the function.
The () mean it is a function that does something.

For example, background(150) paints a grey square over
= the whole canvas.



Functions - arguments

Inside a function we give arguments.

We can give O, 1, or more arguments.

For example: is @ function that
has no arguments

And is @ function that takes 3
arguments

.
2
3
4
5
6
7
8
9
0

1

function setup() {

}

createCanvas(400,400);

function draw() {

}

background(150);
noFill();
circle(100,100,100);



Variables




—
QWO NOUILDA WN=

[]

N

Below is an example of hard-coding. We place
our circle at the x,y coordinate of (100,100)

function setup() {
createCanvas(400,400);

}

function draw() {
background(150);
noFill();
circle(100,100,20);|

}

]

[]




—

QwWoo~NOUIAhWN =

[]

O
lLlf we replace the x,y coordinates with mouseX and
mo

O

. This is considered “soft-coding”, meaning the value of the
variables changes each time our loop runs.

function setup() {
createCanvas(400,400);

}

function draw() {
background(150);
noFill();
circle(mouseX,mouseY,20);

}

seY, then we can tell the circle to move with the cursor.

]

[]




—

QWO ~NOUITA WN —

[]

\ -
ThiL is because mouseX stores the value of the
cursor on the x axis, and mouseY stores the

function setup()
createCanvas (40

}

function draw() {
background(150)
noFill();
circle(mouseX,m

}

peacock




—

QwWoo~NOUIAhWN =

[]

This mjans, if the

function setup() {
createCanvas(400,400);

}

function draw() {
background(150);
noFill();
circle(mouseX,mouseY,20);

) <\

mouseX = 50 mouseY = 250

X,y coordinates = 50,250

As the draw( ) function repeats every millisecond, and the
cursor moves, the circle will appear to follow the mouse.

(0,0)

cursor is moved 58 pixels to the right, and 250
pixels down, the circle will move to that position.

]

]




Creating our own
TEELEE

declare assign reassign

use




We can create our own variables to store
3 custom value that we assign to it.

First we have to declare the variable.
In JS there are a few ways, here we
use which creates the variable.

We can name them anything, as long
as it doesn’t begin with a symbol,
and doesn’t have any spaces.

1
2
3
4
5
6
7
8

9
10
11
12
13

let xPosition;

let yPosition;

function setup() {
createCanvas(400,400);
xPosition = 200;
yPosition = 200;

}

function draw() {
background(150);
noFill();
circle(xPosition,yPosition,20);

}



Then we have to assign the variable.

We give it a starting value by writing

and a value.

Don’t forget, every line of code that
isn‘t @ function definition or
conditional statement must end with

d

—
QWO NOOOUILEA WN =

11
12
13

let xPosition;

let yPosition;

function setup() {
createCanvas(400,400);
xPosition = 200;
yPosition = 200;

}

function draw() {
background(150);
noFill();
circle(xPosition,yPosition,20);

}



Now we can use the variable. 3 []

1 |let xPosition;

Here we replace the x,y coordinates 2 |let yPosition;

of the center of the circle. 37| function setup() {
4 createCanvas(400,400);
5—» xPosition = 0;

When the code reaches line 12, it 6—p yPosition = 0;
looks above line 12 to find the value 7 |}
of these variables. 8

97| function draw() {
It finds the value on line 5 and 6, and 10 4background(150);

uses those values : 11 *noFill(); — —
12 circle(xPosition,yPosition, 20);|

13 |}



At this point, it seems pointless to do
this, but let’s look at how this can be
used to animate our circle.

Still inside our draw function, we tell
our variables to change by 1 every time
the draw loop runs.

is the same thing
as saying

This is reassignment.

}

OoO~NOYOUT DA WN -/

10
1]
12
13
14
15 |}

let xPosition;
let yPosition;
function setup() {

createCanvas(400,400);
xPosition = 0;

yPosition = 0;

function draw() {

background(150);
noFill();
circle(xPosition,yPosition,20);
xPosition += 1;
yPosition += 1;

Which means xPosition = 0 + 1

Then... xPosition =1 + 1

Then... xPosition =2 +1
etc...



ol el el b wh b b b
NN AAWN DO NOUVAWN -

Here's what this does:

let xPosition

let yPosition

function setup() (
createCanvas(400,400);

)

function draw() (
background(15@);
nofFill():
circle(xPosition,yPosition,20);
xPosition += 1;
yPosition += 1;

e;
Q;




let xPosition;

let yPosition;

function setup()
createCanvas(400,400);
xPosition = @;
yPosition = @;

function draw() (
background(150);
nofFill1();
circle(xPosition,yPosition,k 20);
xPosition += 1;
yPosition += 1;

-l i b b wh ad b
DNV AR WN D OGS WN -

19 )



Conditionals - If




Conditionals - If

Conditional if statements always have a specific structure.

For example, is a
variable equal to a
certain number?

The first curly bracket represents

“then”. So, if a variable is equal to
a certain number, then...do this
code




Conditionals - If

Conditional if statements always have a specific structure.

We can add an else to say, if the
first condition is not true, then in all
other cases, do this code.

(ex: if a variable does not have the
given value, always do this other
thing)




Conditionals - If

Conditional if statements always have a specific structure.

In between the if and the else, we
can add an else if to say, if the first
condition is not true (false), then
check this condition.

We can add multiple else ifs here.

If the if condition is false, the
program will check the else if
conditions, in order.

- When a condition is true, the code
inside runs.




1 let xPosition;

2 let yPosition;

37 function setup()

4 createCanvas(400,400);
5 xPosition = @;

6 yPosition = @;

7

8

9" function draw() (

10 background(150);
n nofFill();
12  circle(xPosition,yPosition,20);
13 xPosition += 1;
14 yPosition += 1;

15

16

17
18 }
19 )



Conditionals

Here we check, is the x and y
position of the circle the bottom
corner - (400,400) ~

If it is equal to (400,400) then
we want to return it to the
origin - the top left corner.

All we have to do is make the
X,y coordinates equal to (0,0)

[]

]
[] []

—
QWO ~NOTUTAWN=—

L e
gabhwnNn =

16
17
18
112

let xPosition;
let yPosition;
function setup() {

createCanvas(400,400);

xPosition = 0;
yPosition = 0;

I

function draw() {
background(150);
noFill();

: 0) .
circle(xPosition,yPosition,20);

xPosition += 1;
yPosition += 1;
if (xPosition ==
xPosition = 0;
yPosition = 0;
}
}

400 && yPosition ==

400) {






Scope

The curly brackets in JS represent the scope of the program.

When we click on one, we 97 function draw() ]
can see which one 10 backgr‘(()L)mdU 50);
) 11 noFill();
h . ¥ L o
matches it 1% circle(xPosition,yPosition,20);
13 xPosition += 1;
Here, these curly brackets 44 yPosition += 1;

represent the scope of the 15+ | if (xPosition == 400 && yPosition == 400) {

function. 16 xPosition = 0;
17 yPosition = 0;
18 | |2

O 19 [}



Scope

The curly brackets in JS represent the scope of the program.

Here, these curly brackets
represent the scope of the
function.

This means, anything we
want to “draw” on our
canvas, needs to be
included inside the curly
brackets belonging to the

function.
. unctio

[]

9| function draw() [{|

10
11
12
13
14
15
16
17
18

19 [}

background(150);
noFill();
circle(xPosition,yPosition,20);
xPosition += 1;
yPosition += 1;
if (xPosition == 400 && yPosition
xPosition = 0;
yPosition = 0;

}

400) {



Scope

The curly brackets in JS represent the scope of the program.

400)

Notice that there are 97 function draw() {
other curly brackets inside 19 | [ background(150);
the function. 11 noFill();
2 circle(xPosition,yPosition,20);
i3 xPosition += 1;
These belong to the if 14 | | yPosition += 1;
statement. They 15 if (xPosition == 400 && yPosition
. 16 xPosition = 0;
tit . !
represent its scope 17 [;;osition 50
18
O 19



Scope

The curly brackets in JS represent the scope of the program.

These belong to the if

statement. They 1?
represent its scope. 12
13

: : 14
This means, line 16 and 15
line 17 belong to the if 16
conditional. 17
18

O 1,

3

97| function draw() {

background(150);

noFill();
circle(xPosition,yPosition,20);
xPosition += 1;

yPosition += 1;

if (xPosition == 400 && yPosition

400)

xPosition = 0;
yPosition = 0;




O

H L ) (]
Scope

18 if (xPosition == 400 && yPosition == 400) {
Here is an example of a 19 xPosition = 0;
conditional sequence that 20 yPosition = 0;
changes the color of the ol }

_ _ _ 22 if (xPosition < 100) {

circle in three different zones. 23 strokeColor = 0;

24 }
The first two ifs are two 25 else if (xPosition > 100 && xPosition < 250) {
separate conditionals. They gs } strokeColor = 100;
both get checked even if one 287 else {
is true. 29 strokeColor = 255;

30 }

31

320 )



O

[ | ] )
S []
cope
18 if (xPosition == 400 && yPosition == 400) {
Each if and else if and else 19 xPosition = 0;
has their own scope. g? yPosition = 0;
22 if (xPosition < 100) {
23 strokeColor = 0;
Remember, when we click 24 P
’ 25 else if (xPosition > 100 && xPosition < 250) {
on one curly bracket, we 26 strokeColor = 100;
can see which one 2
: 28 else {
MEENES 29 strokeColor = 255;
30
This shows us the scope 31
of a function or a 32 |}

[0 conditional.
[]



Operators




Operators

s LUl

We can perform operations on variables in order to check for conditions or
to change (re-assign) a variable.

Assign a Reassign a Change a Check a Compare
variable variable variable condition conditions
&&
— — +
> (and)
+= - Il
= (or)
-= * == |
(multiply) (not)
. /
(divide)




s
S WO NOOUTSA WN =

NNNNNNNNODN = ==
ONOOUAWN—SQOWOONOOULAE WN =

29
30
31
32

let xPosition;

let yPosition;

let strokeColor;

function setup() { functkvvd?fﬁﬁﬁon
CreateCanvas(400, 4007, function
xPosition = 0;
yPosition = 0;
strokeColor = 0;

}

|E ; | 0O { I function definition

background(150);
noFill(); .
stroke(strokeColor); functions
circle(xPosition,yPosition,20);
ition += T,

yPosition += 1;

if (xPosition == 400 && yPosition == 400) {

xPosition = 0;
yPosition = 0;

}

if (xPosition < 100) {
strokeColor = 0;

}

else if (xPosition > 100 && xPosition < 250) {
strokeColor = 100;

1,

else {
strokeColor = 255;

}



s
S WO ~NOYUTAE WN =

WWWNNNNNNNNNODN = =S D
N0 OO ~NOOUITAE WN—- OO~ UTLA WN —

let xPosition;
let yPosition;
let strokeColor;

function setup() {

createCanvas (400,

xPosition = 0;
yPosition = 0;
strokeColor = 0;

function draw() {
background(150);
noFill();

Variable declaration

400);

Variable assignment

stroke
c1rcleéxP051t10n yPosHmanO) Variable use

xPosition += 1;
yPosition += 1;

if (xPosition ==

400

xPosition = 0;
yPosition = 0;

3

Variable reassignment
&& yPosition == 400) {

Variable reassignment

if (xPosition < 100) {

I strokeColor = 0;

J
I strokeColor = 100;

}

else {

Variable reassignment

100 && xPosition < 250) {
Variable reassignment

ptrokeColor = 255; | Variable reassignment

}



s
S WO NOOUTSA WN =

WWWNRNNNNNNNNODN = =SS
N0 OUoONOCTUTAWN—QQOUOONOTULA WN =

let xPosition;
let yPosition;
let strokeColor;

function setup() {

createCanvas(400,400);

xPosition = 0;
yPosition = 0;

strokeColor = @
|}

function draw()

{

noFill();

xPosition += 1
yPosition += 1

background(150);

stroke(strokeColor);
circle(xPosition,yPosition,20);

.
)

if (xPosition == 400 && yPosition == 400) {
xPosition = 0; if
yPosition = 0; 1 scope

}

if (xPosition < 100) {

| strokeColor = 0; if ccone |

} L

else if (xPosition > 100 && xPosition < 250) {
strokeColor = 100; else IT SCop

1]

else {

| strokeColor = 255; E€IS€ SCOpe€e |

}

setup() scope

draw( ) scope

conditional if statement

Separate conditional if statement



s
S WO NOOUTSA WN =

NN NNNNNNN = e e el oed oed oed
CO~NOOUTHAE WN—- OO~ UTLSEAE WN —

29
30
31
32

let xPosition;

let yPosition;

let strokeColor;

function setup() {
createCanvas(400,400);

xPositiorElO;
yPosition
strokeColorl=D;

|}

function draw() {
background(150);
noFill();
stroke(strokeColor);
circle(xPosition,yPosition,20);
xPositiod = |1;
yPosition += |1 ;
if (xP031t10nE|400 && yPosition[==] 400) {

xPosition[= P;
yPosition[ = P;

}

if (xPosition[<J100) {
strokeColor = P;

3

else if (xPositior{ >]100 &% xPositior <P50) {
strokeColor=J100;
3

else {
strokeColor = P55;
3

Assign a3 Reassign a Change a variable Check a condition Compare conditions
variable variable
&&
= = + > (and)
- I
+ — — < (or)
-— * — |
(multiply) (not)
(divide)




Comments




Comments

Comments allow us to take
notes throughout our code.

They are not necessary for our
code to run. In fact, a comment
makes that text not work

(whether a note or a piece of
code)

We can use them to help us to
do the following things:

e Help us remember why we
used the code we did

e Help a new user understand
the code and the program

e Help us break down problems
as we're writing new code

e Comment out pieces of code
to test different methods

[]



Comments in JS

We write them with // for a
one line comment

16
17
18
19
20
21
22
23
24

We can also write them with /* and */ to
comment out multiple lines of code

//make the circle travel across the screen diagonally|

xPosition += 1; //add 1 to xPosition every time the loop runs

yPosition += 1; //add 1 to yPosition every time the loop runs

/%

if (xPosition == 400 && yPosition == 400) {
xPos;t}on 0; if statement not
yPosition = 0; U

}
*/

This makes the




Documentation




Documentation - reference

circle(100,100,100);
triangle(100,100,0,200,200,200);

for do.

Some things can be figured out by trial and error. 17 function setup() {
2 createCanvas(400,400);
It is easy to figure out what the argquments for 2 }
do. 5
67| function draw() {
It is not so clear to figure out what the arguments Z; 23?‘;?{?‘;2‘“150);
9
0
1

— —

This is an example of when we would need to
look up the documentation, or reference page.

P5JS has a specific reference page for its library of code

pSjs.org/reference



https://p5js.org/reference/

— —

QO WOoO~NOOUITA,WN—

Documentation - reference

By trying things out, we can figure out how many
arguments circle() needs, and what they do.

function setup() {
createCanvas(400,400);

X

function draw() {
background(150);
noFill();
circle(100,100,100);
triangle(100,100,0,200,200,200);

Center position
= (100,100)
d =100




Documentation - reference

Triangle is less obvious, but on

p5js.org/reference we can figure out

how many arguments needs, and
what they do.

function setup() {
createCanvas(400,400);

X

1
2

3

4

5

67| function draw() {
7 background(150);

8  noFill();

9 circle(100,100,100);

() triangle1100,100,0,200,200,200};
113}

Shape

2D Primitives

Syntax

triangle(x1l, yl, x2, y2, x3, y3)

2 Parameters

Number: x-coordinate of the first point
Number: y-coordinate of the first point

point() x2 Number: x-coordinate of the second point
quad()
rect()

Number: y-coordinate of the second point

Number: x-coordinate of the third point
square()
Number: y-coordinate of the third point

triangle()

(200,200)



https://p5js.org/reference/

Documentation - reference

All programmers use documentation
reqularly. Every language has
documentation somewhere online.

We can’t know every function that exists, or
how every variable works. So we have to
look it up to understand how to use it.

On the P5JS reference page, there are lots
of specialized functions, variables, and
elements, and by clicking on them, we can
see what they do.

[]




